Effect of Irradiation Damage on Fission Product Transport: FY2017 Progress

AGR TRISO Fuels Program Review July 18-19, 2017

I. J. van Rooyen, S. Meher, T.M. Lillo

INL/MIS-17-42685

Advanced Gas Reactor Fuels Program Meeting, July 18-19, 2017, Idaho Falls, Idaho

Outline

- Background and Objectives
- FY2017 work scope
- Neutron Damage: Defect density and irradiation temperature
- Neutron Induced Phase Transformations
- HRTEM structures of Particle AGR1-411-030
- Conclusions
- Recommendations: Future Work
- Acknowledgements

Background: Transport Mechanisms

- Complex interactive mechanism likely:
 - neutron damage,
 - grain boundary characteristics,
 - chemical interaction with Pd, and
 - vapor transport

[I. J. van Rooyen, H. Nabielek, J. H Neethling, M. Kania and D.A. Petti, PROGRESS IN SOLVING THE ELUSIVE AG TRANSPORT MECHANISM IN TRISO COATED PARTICLES: "WHAT IS NEW?" Paper 31261, Proceedings of the 2014 International HTR-2014 Conference of High Temperature Reactors, Weihai, China, 2014]

Neutron Damage (FY2017)

Work focus on neutron damage and its effects on:

- Fuel performance
- Fission product distribution
- Bulk and grain boundary fission product transport mechanisms.
- This work will narrow the gap in understanding the effect of neutron irradiation on fission product transport in the intact SiC layer of TRISO-coated particles.

Neutron Damage: Scope and Matrix

- Correlate neutron-induced microstructural
 - defect density,
 - volume fraction, and
 - morphology with neutron irradiation parameters (i.e., neutron fluence and temperature)
- Analyze the defect density and distribution in the vicinity of fission product precipitates

Advanced Gas Reactor Fuels Program Meeting, July 18-19, 2017, Idaho Falls, Idaho

Neutron Damage: Defect Density and Irradiation Temperature

Advanced Gas Reactor Fuels Program Meeting, July 18-19, 2017, Idaho Falls, Idaho

Neutron Damage: Defect density and irradiation temperature

* Volume fraction and densities of **voids** can give insights to the irradiation temperature

Neutron irradiation induced voids are non-uniformly distributed. Voids are aligned along stacking faults.

Voids have tetragonal shape

Effect of fluence on size and density

 $1.9 \ {
m x} \ 10^{25} \ {
m n/m^{2,}}$

 $9.6 \times 10^{25} \text{ n/m}^{2.5}$

[S. Kondo, Y. Katoh, and L. L. Snead, Unidirectional formation of tetrahedral voids in irradiated silicon carbide, Appl. Phys. Lett. 93, 163110 (2008)]

S Kondo et al, JNM 382 (208) 160 -169]

AGR2-223-RS06, Lamella 9 (SiC/OPyC)

Estimated Temperature > 1400 °C

Neutron Damage: Defect density and irradiation temperature

Below 800 °C: Black spots dominant defects

800 -1150 °C : some black spots, small loops, Frank Loops

1300-1460 °C : irradiation fluence affects defect density and size, larger Frank loops (>20 nm in radius).

Defect Size, Morphology and Concentration differences??

- Preferential formations of cavities at stacking faults were confirmed above 1300 °C
- Small cavities were dispersed with low number density at 1130 °C [S Kondo et al, JNM 382 (208) 160 -169]

Distribution of voids around nanoscale precipitates

Yellow arrows indicates α -SiC or Pd precipitates

AGR1-632-034

Tetragonal shaped voids around nanoscale precipitates

Yellow arrows indicates α -SiC or Pd precipitates

AGR1-523-SP01

Neutron Induced Phase Transformations

Unirradiated SiC (Variant 3 Fuel Compact T0650)

- β-SiC
- Stacking Faults
- No α -SiC region
- No apparent frank loops

For the consistency of the study, all of the TEM were carried out along <001> zone axis of b-SiC matrix

Blue arrows: structures at the end of Frank loops along {111} planes Red arrow: structure with one of its edge at a stacking fault

Frank loop: are linear defects, introduced due to neutron irradiation here *Stacking fault:* are planar defects, often present in close packed materials such as SiC

Only Si and C

Si, C and Pd

Also described by: [Chad M. Parish, Takaaki Koyanagi, Sosuke Kondo

&Yutai Katoh, Irradiation-induced β to α SiC transformation at low temperature]

Tan TY et al On the diamond cubic to

Ute Kaiser, Nanocrystal formation in hexagonal SiC after Ge+ ion implantation, Journal of electron microscopy 50(3): 251-263 (2001)

hexagonal phase transformation in SiC Phil. Mag. A 44: 127-140, 1981

High Resolution (HR)TEM: for structural analysis

 $\{111\}_{\beta} || \{0006\}_{\alpha}$

 α -SiC precipitate appear to nucleate at the edge of a Frank loop

Some of the structures were confirmed to be irradiation induced low temperature α -SiC

Advanced Gas Reactor Fuels Program Meeting, July 18-19, 2017, Idaho Falls, Idaho

Case 2

Surprisingly, $\{002\}_{\beta} || \{0006\}_{\alpha}$

 $\alpha\text{-SiC}$ lies on a stacking fault

 $\alpha\mbox{-SiC}$ appears have multiple orientation with $\beta\mbox{-SiC}$

Advanced Gas Reactor Fuels Program Meeting, July 18-19, 2017, Idaho Falls, Idaho

High Resolution (HR)TEM of Pd rich precipitates

L1₂ structure of precipitate corresponds to Pd₃Si stoichiometry *Pd rich precipitates were confirmed to be Pd₃Si, based on their stoichiometry

Intragranular presence of Pd in SiC

- STEM image showing the different crystallography and mass contrast within the hexagonal structure
- It has been reported that reaction of Pd with α -SiC is easier than β -SiC, hence
- Pd₃Si adopts the morphology of parent surrogate a-SiC: Metamorphosis

Advanced Gas Reactor Fuels Program Meeting, July 18-19, 2017, Idaho Falls, Idaho

Intragranular presence of Pd in SiC

Particle AGR1-411-030

Intragranular Presence of Pd in SiC: Particle AGR1-411-030

[E J Olivier, J H Neethling, I J van Rooyen, Cs-corrected STEM and EDS Investigation of Pd and Ag transport along SiC grain boundaries and dislocations, Baotou China, 4th SiC workshop]

University

Intragranular Presence of Pd in SiC: Inclusions with void-like nature

[E J Olivier, J H Neethling, I J van Rooyen, Cs-corrected STEM and EDS Investigation of Pd and Ag transport along SiC grain boundaries and dislocations, Baotou China, 4th SiC workshop]

Advanced Gas Reactor Fuels Program Meeting, July 18-19, 2017, Idaho Falls, Idaho

Intragranular Presence of Ag in SiC: Particle AGR1-411-030

[E J Olivier, J H Neethling, I J van Rooyen, Cs-corrected STEM and EDS Investigation of Pd and Ag transport along SiC grain boundaries and dislocations, Baotou China, 4th SiC workshop]

Conclusions

- Neutron induced phase transformation of SiC:
 - α-SiC regions found at Frank loops and Stacking Faults of both AGR-1 and AGR-2 particles
 - α -SiC regions appears to have multiple orientations with β -SiC matrix
- No α-SiC regions and Frank loops identified in unirradiated AGR-1 and AGR-2 particles
- Some Transformed regions contain Pd
 - Although Pd is found as the main intragranular fission product, the possibility of Pd assisted transport of other elements cannot be ruled out.
 - Pd rich precipitates confirmed to corresponds to Pd₃Si

Recommendations: Future Work

- Expand the neutron damage work currently performed by correlating neutron-induced microstructural findings:
 - defect density,
 - volume fraction, and
 - morphology

with neutron irradiation parameters (i.e., neutron fluence and temperature (based on microstructural features of this study)

- Analyze the defect density and distribution in the vicinity of fission product precipitates
- Integrate PED, neutron damage, chemical composition and structural information for fission product mechanisms

Acknowledgements

- Scott Ploger and Jason Harp: Mount and decontamination preparation for electron microscopy examination and micro-analysis
- Jim Madden: FIB-STEM
- Nelson Mandela Metropolitan University: Jan Neethling and Jaco Olivier

This work was sponsored by the U.S. Department of Energy's Office of Nuclear Energy, under U.S. Department of Energy Idaho Operations Office Contract DE-AC07-05ID14517, as part of the Advanced Reactor Technology Program and the Nuclear Scientific Users Facility–Rapid Turnaround Experiments program.

Questions??

What now?? Isabella van Rooyen Isabella.vanrooyen@inl.gov

0000 100 Idaho National Laboratory (208) 526-4199

Idaho National Laboratory

Technique Acronyms

Acronyms	Description
APT	Atom Probe Tomography
EDS	Energy Dispersive Spectroscopy
EBSD	Electron Back Scattered Diffraction
EELS	Electron Energy Loss Spectroscopy
EFTEM	Energy Filtered TEM
EPMA	Electron Probe Micro-Analysis
FIB	Focused Ion Beam
HRTEM	High Resolution Transmission Electron Microscopy
SAD	Selected Area Diffraction
SEM	Scanning Electron Microscope
STEM	Scanning Transmission Electron Microscopy
TEM	Transmission Electron Microscope
t-EBSD	Transmission-EBSD
TKD	Transmission Kikuchi Diffraction
WDS	Wavelength Dispersive Spectroscopy

Sub nanometer inclusions and vacancies Sub nm inclusions

